Learning under uncertainty: a comparison between R-W and Bayesian approach

نویسندگان

  • He Huang
  • Martin P. Paulus
چکیده

Accurately differentiating between what are truly unpredictably random and systematic changes that occur at random can have profound effect on affect and cognition. To examine the underlying computational principles that guide different learning behavior in an uncertain environment, we compared an R-W model and a Bayesian approach in a visual search task with different volatility levels. Both R-W model and the Bayesian approach reflected an individual’s estimation of the environmental volatility, and there is a strong correlation between the learning rate in R-W model and the belief of stationarity in the Bayesian approach in different volatility conditions. In a low volatility condition, R-W model indicates that learning rate positively correlates with lose-shift rate, but not choice optimality (inverted U shape). The Bayesian approach indicates that the belief of environmental stationarity positively correlates with choice optimality, but not lose-shift rate (inverted U shape). In addition, we showed that comparing to Expert learners, individuals with high lose-shift rate (sub-optimal learners) had significantly higher learning rate estimated from R-W model and lower belief of stationarity from the Bayesian model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Implementation of Traditional (S-R)-Based PM Method with Bayesian Inference

In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...

متن کامل

Robust production scheduling in open-pit mining under uncertainty: a box counterpart approach

Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal with the OPPS uncertainties, various approaches can be recommended. Robust opti...

متن کامل

Bayesian Data Fusion: a Reliable Approach for Descriptive Modeling of Ore Deposits

Recognition of ore deposit genesis is still a controversial challenge for economic geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF) implementing available proofs: semi-schematic examples with two (Cu and Pb + Zn) and three (Cu, Pb + Zn and Ag) evidences. The data, in current paper are just concentrations of indicated elements, were collected from Angouran’s ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016